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Abstract

This paper presents a dynamic model of price competition between two platforms in which
consumers value local network effects and choose one of the platforms (single homing). Specifically,
each consumer’s utility level depends on the number of her neighbors on the same platform. Each
platform competes for new customers in different neighborhoods with a homogeneous entry price. I
characterize equilibrium market structure with a combination of analytical and numerical solutions,
and compare them to results from models with network effects that are global, in which a consumer
benefits from all other consumers on the same platform. I provide sufficient conditions such that
one platform dominates all market segments, as well as sufficient conditions that one platform only
dominate one market segment.
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1 Introduction
In many markets (e.g., video games) consumer utility is a funciton of the number of other consumers of
the same product (e.g., game platform), either because compatibility allows for consumers to play each
other (direct network effects) or because a bigger installed base leads to the development of third party
products and services (indirect network effects, e.g., new games).

An important distinction regarding network effects dinstinguishes global from local effects. With
global network effects, the value of a network to consumers depends on the total number of consumers
in the same network,1 regardless of their identity.2 With local network effects, a consumer only values
other customers in her neighborhood. Here neighborhood can refer to social group, geographical segment,
profession, or generally speaking, a group of people who have certain relationships. This paper models
price competition of firms with consumers who enjoy local network effects.

For example, a hardcore gamer enjoys playing games with other hardcore gamers, but not with
casual gamers. Her utility depends on the number of hardcore gamers playing on the same game
console, but not the number of casual gamers. However, models with global network effects assume
consumer utility depends on the total number of gamers owning the same game console, which might
lead to a very different analysis of firms’ and consumers’ optimal strategy. In this context, local network
effects arise when the installed base of a given platform includes many users with similar tastes (in the
same neighborhood), so that the games developed for the platform have greater appeal to users in that
neighborhood.

Another important aspect of network effects is the distinction between platform size and strength
of network effects. The size of a network refers to the number of users (direct network effects) or
the availability of complementary products (indirect network effects) in that network. The strength of
network effects refers to how strongly users value others on the same platform. Consumers’ valuation of
a platform depends on both the size and the strength of network effects.

This paper investigates the relative role of local and global network effects on platform competition.
In my model, each platform competes for new customers in two market segments by setting a single
platform adoption price,3 and new consumers choose a platform given the adoption prices and current
platform size in both market segments. Both firms and consumers benefit from network effects, but
consumers’ local network benefits are greater than the global network benefits, in the sense that a
consumer benefits more from additional users on the same platform and in the same market segment.
Both firms and consumers make their decisions sequentially and consumers “switch” platforms through
a birth-death process (that is, each consumer reassesses its platform membership at random moments
in time).

I solve for the consumers’ optimal platform choices and the firms’ optimal pricing decisions, both of
which depend on current market size in all market segments. I also characterize the equilibrium using
both analytical and numerical results. Moreover, I provide sufficient conditions for different equilibrium
market structures — mainly by varying the discount factor and the strength of local network effects —
and investigate the rationale behind these results.4

1I will use the terms “platform”, “firm” and “network” interchangeably. Consumers are on the same platform/network
when they all use products or services from the same firm.

2Please note that the global network effect is not related to global games in game theory, which is an incomplete
information game where the payoff structure is determined from a class of games and where each player makes a noisy
observation of the game. (See Carlsson and Van Damme (1993))

3I will use “market segment” to denote the idea of “neighborhood” mentioned above.
4In this dynamic model, the market structure includes stationary distribution of market share, probability of a sale to

new customers, and equilibrium prices charged by platforms.
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If the strength of network effects is weak, i.e. consumers do not value highly the size of existing
customer base, then consumers’ idiosyncratic brand preferences and platform adoption prices dominate
their platform choice. In equilibrium, the stationary distribution of market shares is uni-modal, that
is, both platforms retain a significant market share in each market segment. In this case, consumers’
platform decisions are highly elastic to prices, so accordingly, firms compete fiercely for new customers
through their platform adoption prices.

If strength of network effects is strong, i.e. the size of existing customers is highly valued, then a
larger platform is more likely to dominate the market. Models with global network effects show that in
equilibrium one platform dominates the whole market. However, my model with local network effects
predicts that in equilibrium each platform dominates only one of the market segments, with the local
dominant firm charging a high adoption price.

Roadmap

The rest of the paper is organized as follows. In Section 2, I discuss the similarities and differences
between (global and local) network effects and social networks by going through related literature in
both fields. In Section 3, I present the dynamic competition model with local network effects and
solve the dynamic optimization problems for consumers and firms. In Section 4, I provide analytical
implications characterizing equilibrium price and market structure. In Section 5, I give a summary
of numerical results and provide parameter values for different equilibrium market structures. I also
discuss the intuition and rationales behind the numerical results. Section 6 concludes with how this
framework can be improved with certain features and how it can be applied to various industries for
dynamic demand estimation.

2 Literature Review
Network Effects in IO Literature

Early literature in the study of network effects focused on static models.5 The rapid development of
dynamic models provides deeper understanding through the analysis of strategic consumer and firm
behavior.

Early works in dynamic models include Farrell and Saloner (1985). They build a dynamic model
with strategic consumers who enter into the market at different times. Fudenberg and Tirole (2000)
develop a model of pricing to deter entry by a sole supplier of a network good. They show that with
network effects, the threat of entry can lead the incumbent to set low prices.

Markovich and Moenius (2009) model the hardware purchase decisions by consumers as well as
hardware adoption choices by software developers. Every period software developers decide whether
to enter or exit the market, and if they are in, whether or not to invest to improve the quality of
the software. Consumers choose a hardware platform given the entry price as well as the quality of
the software available on that platform. They find that a successful software developer increases the
hardware’s market share, which in turn results in more quality investment by software developers, thus
speeding up the market dominance process. In a sense, my paper is simpler than theirs since I do
not consider quality investment nor entry/exit decisions in order to focus the effect of strength of local
network effects on equilibrium market structure.

5See, e.g. Katz and Shapiro (1985). Moreover, see Shy (2004) and Farrell and Klemperer (2007) for a thorough
literature review for early literature on static models
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Jenkins et al. (2004) develop a dynamic competition model to analyze the browser war between
Netscape and Microsoft. They analyze the barriers to entry effect caused by network effects, and
investigate a firm’s optimal strategy in order to gain market share faster than competitors. They show
that an entrant firm has an incentive to fight with the incumbent firm. My paper provides conditions
such that the fringe firm has a strong incentive to start a price war against the dominant firm in order
to gain market share, as well as conditions such that the incentive is not enough for the fringe firm to
fight.6

My paper looks at similar questions raised by Zhu and Iansiti (2011). They analyze the effect of the
quality of a platform and consumers’ discount factor on equilibrium market structure using a theoretical
dynamic model in a two-sided market setup, with both consumers and developers. They also provide
an empirical study on the gaming industry and explain the successful entry of Xbox into the market.
A serious limitation of their model is that it assumes homogeneous prices set by different platforms,
i.e. there are no pricing decisions. In fact, firms do not make any decisions in their model. Both
pricing decisions and network effects are essential for firms to attract new customers and keep existing
customers.

Lee (2013) investigates the impact of vertical integration and exclusivity in the gaming industry using
a structural dynamic model in which consumers choose both hardware and software and developers adopt
hardware. He estimates parameter values of the model using sales of PlayStation and Xbox as well as
game titles over time. Then he conducts welfare analysis by simulating counterfactuals where exclusive
vertical arrangements were prohibited. He concludes that exclusivity favored the entrant platform and
is key to the successful entry of Xbox. His model is much more complicated than mine because his
focus is on the structural demand estimation. My paper looks at a different set of research questions
and focuses on the effect of local network effects on equilibrium market structure by providing both
analytical and numerical implications.

The underlying model of my paper is based on Cabral (2011). He models dynamic competition with
consumers making network choices and firms making price decisions. He then provides results regarding
market equilibria, firms’ pricing strategy, and network size dynamics. My paper differs from his in
several aspects. One, different types of network effects are addressed: instead of global network effects,
I analyze dynamic competition for consumers who value local network effects. Second, the timeline of
the model is different: I models a new customer’s decision with simultaneous birth and death process,
so instead of having full information of the current state of the market share, the new customer has an
expectation of future payoff. Third, I model market segmentation and the equilibrium market structure
in different market segments.

Social Networks

Strategic decisions and dynamic interaction are prevalent in the literature of network effects in IO, as
mentioned above. However, the models of network effects in IO have very simple network structure, as
the standard utility is a linear function of the user base in the case of direct network effects. At the
same time, current literature on social networks adopts very complex structures to explain the interaction
among individuals. (See Jackson and Zenou (2012) for a detailed literature review in social networks).
However, current literature in social networks has little dynamic strategic interaction compared to that
in the IO literature. Both types of networks have thus respectively provided deep insights in their own
fields.

6See Doraszelski and Pakes (2007), for other early research on dynamic models with network effects.
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Candogan, Bimpikis and Ozdaglar (2010) study the optimal pricing strategies of a monopolist selling
a divisible good to customers who experience local network effects. They analyze a broader set of
problems, including price discrimination of customers depending on the popularity of that person and
algorithms to achieve the optimal set of customers to serve. There are two main differences from my
paper. First, I consider a duopolistic competition framework and analyze strategic behavior from both
the firms’ and the consumers’ sides. Second, I develop a dynamic model where consumers are forward-
looking. Fundamentally, Candogan, Bimpikis and Ozdaglar (2010) is a paper in social networks and
mine is in IO with certain social networks features.

Campbell (2012) tries to bridge these two areas of research from one end. He constructs a framework
where a monopoly sells a good to consumers who are in social networks. He then shows that the optimal
price of the monopoly can be higher or lower given different structures of the network. Campbell (2012)
starts from models in social networks literature and adds some elements of network effects in IO.

Local Network Effects

Local network effect is an extension of network effects towards the literature of social networks. Current
research in social networks focuses on the formation and behavioral implications of social networks,
using graph theory and cooperative game theory. However, research of network effects in IO focuses on
the effect of network externalities on the decisions of consumers and firms, therefore providing welfare
implications. The topics of network effects in IO include compatibility, standardization, platforms, etc.
Local network effects add certain structures of social networks into network effects in IO.

Very little research has been done on local network effects in an IO setting, i.e. analyzing firms
and consumers behavior due to the benefits from local network effects. Fjeldstad, Moen and Riis
(2010) explore the competition and welfare effect using a local network effect framework where two
firms compete by offering differentiated products. In their static model, each consumer has a social
location on a Salop circle and each has a technical preference. Their model is more complex since each
consumer values others’ platform decisions depending on their distance. However, their equilibrium
analysis depends on the assumption that social and technical preferences are correlated. In my model,
I focus on the differences of products caused by network effects, not by the preference of different social
group. Moreover, with a dynamic setup, my model does not require coordination among all consumers.

Existing literature of symmetric models with (global) network effects all show that whenever the
network is very strong, i.e. consumers value highly of existing user base on the same platform, in
equilibrium, the market always consists of a dominant firm and a competitive fringe, and each firm can
become the dominant firm with equal probability. So what if there are two market segments where
consumers only value local network effects. If firms can charge different prices in different market
segments, then in each market segment the competition is exactly the same as predicted by models with
global network effects, thus in each segment, both firms are equally likely to become a dominant firm.
However, in reality, firms are usually unable to price discriminate by market segments. My model will
show that when the network is strong enough, the equilibrium market structure will always be local
dominance where each firm dominants one market segment.

3 Model
I create an infinite-period model where two platforms compete for consumers and consumers choose a
platform by paying the entry price. The timeline of the model is shown in Figure 1.7

7My model has many similar features to Cabral (2011), who models global network effects.
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Figure 1: Timeline of Model

To model local network effects, I assume two local market segments, denoted by A and B, and two
platforms, represented by i and j. (iA, iB) and (jA, jB) are the customer bases of platforms i and j in
each market segment. I assume that two local market segments have the same population size N .8

The network switching decision is modeled as a simultaneous birth-death process.9 Before the birth-
death process, both networks set entry prices for new customers, taking into consideration of their
current user bases and expected future period payoff and firm value. A higher price increases the firm’s
current profit when it’s chosen by the consumer, but reduces the chance of being chosen. If the future
payoff is valued highly (i.e. high discount factor), a network will fight fiercely for more user base and
trade short-term losses for long-term gains. Then firms solve for the dynamic optimization problem by
offering entry prices pi(iA, iB) and pj(jA, jB).

At the beginning of each period, exactly one randomly chosen customer dies (leaves a network) and
one new customer is born (re-evaluates her network choice) in the same segment.1011 Then the new born
customer chooses a network to join by paying the network entry price pi or pj, taking into consideration
of her own network preference, network entry prices, and current user bases.

After the birth-death process, new user bases are known to both firms and consumers. All consumers
and firms receive their period payoffs. For example, consumers in network i in market segment A receive
λ(iA), and network i receives a payoff of θ(iA, iB). Firms’ period payoff are increasing function of both
iA and iB, but consumers’ period benefit only depend on the number of other consumers in the same
network and same segment. I assume the aftermarket consumer and firm payoffs satisfy the following
properties:

Property 1. λ(iA) and λ(iB) are increasing in iA and iB, respectively.

Property 2. θ(iA, iB) is an additively separable, and is increasing in both iA and iB. Moreover, θ(iA +
1, iB)− θ(iA, iB) is increasing in iA only, and θ(iA, iB + 1)− θ(iA, iB) is increasing in iB only.

Property 1 says that consumers benefit from more existing customer base on the same platform.12

The first part of property 2 shows that firms benefit from larger network size in both market segments.
8iA, iB , jA, jB ∈ [0, N ], and iA = N − jA, iB = N − jB
9This discrete birth-death process is essentially the same as the expected value of a continuous case such as Poisson

process. For a Poisson process with arrival rate λ, the mean time interval between any two consecutive events is 1
λ . So

the discount factor in the discrete case is δ = exp(−r/λ).
10By assuming a consumer dies and is born in the same segment, I can hold the population in both segments fixed in

order to reduce the state space and allow the model to be analytically and computationally tractable.
11The proportion of consumers who re-evaluate their network decision is 1

N . A larger N means that a smaller proportion
of consumers go through the birth-death process.

12Here I model positive network effects, i.e. more users make a product more valuable. In reality, negative network
effects, or “congestion effect”, can also occur, where where more users make a product less valuable.
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The second part of property 2 says that marginal aftermarket benefit from an additional customer is
increasing in the network size, i.e. increasing return to scale.13

The “localness” of local network effect comes from two sources. First, consumers only value others on
the same platform and in same market segment, not those on the same platform but different segment,
nor those in the same segment but on a different platform. For example, hardcore Xbox gamers do
not want to play against amateur Xbox gamers and cannot play against any Wii gamers. However, the
number of consumers in other segments still matters through firms’ pricing strategy. Second, firms can
only set one price for all consumers, i.e. firms cannot price discriminate against consumers based on their
market segmentation.14 So each firm takes both market segments into consideration when maximizing
its firm value.

In the subsequent analysis, I will solve for firms’ optimal pricing strategy and consumers’ optimal
network adoption strategy. Then I will provide both analytical and numerical analysis.

3.1 Consumers’ Network Choices

When a consumer is born, she has a relative platform (brand) preference for platform i over platform
j, denoted by γ.15 I assume the distribution of γ satisfies the following assumption.

Assumption 1. (i) Φ(γ) is continuously differentiable; (ii) φ(γ) = φ(−γ); (iii) φ(γ) > 0, ∀γ; (iv) Φ(γ)
φ(γ)

are strictly increasing; (v) φ′(γ)
φ(γ)

is strictly decreasing.

This assumption has been widely used, especially in the literature of auction theory, and many
distributions, including the normal distribution, satisfy Assumption 1.

When a new consumer chooses which platform to join, three factors are taken into consideration: 1.
relative platform (brand) preference; 2. platform entry prices; 3. current user bases and future expected
user bases. When a consumer is born, she is assigned a random platform preference γ which follows
certain distribution. In each period, both platforms chooses the platform entry prices pi and pj, given
their current market share. The customer observes the existing user bases of both platforms and makes
prediction on the future evolution of the market structure. In each period, consumers benefit from
existing customer base on the same platform, denoted by λ(.). u(iA, iB) is the consumer value function
for a consumer on platform i in market segment A, which is the expected discounted value of all future
period payoffs.16

The demand for one platform is measured by the probability of a new consumer choosing that
platform. Given the current user base (iA, iB), I first calculate the position of the indifferent customer
in market segment A: x(iA, iB)

13Many industries satisfy these two properties, especially those with large investments in R&D or infrastructure, e.g.
game consoles, telecommunications, etc.

14The inability to price discriminate may result from logistical or legal reasons.
15In other words, if γ = 0 then the consumer is indifferent between two platforms; if γ > 0, then she prefers platform i;

and if γ < 0, then she prefers platform j.
16Similarly, u(iA + 1, iB) is consumer value function for a consumer on platform i in segment A when there are iA + 1

and iB in each segment, u(iB , iA) is consumer value function for a consumer on platform i in segment B, u(jA, jB) is
consumer value function for a consumer on platform j in segment A, etc.
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x(iA, iB)− pi +
iA
N
u(iA, iB) +

jA
N
u(iA + 1, iB) = −pj +

jA
N
u(jA, jB) +

iA
N
u(jA + 1, jB)

x(iA, iB) = pi − pj +
jA
N
u(jA, jB) +

iA
N
u(jA + 1, jB)− iA

N
u(iA, iB)− jA

N
u(iA + 1, iB)

≡ pi − pj + Eu(jA, jB)− Eu(iA, iB)
(1)

Similarly, the position of the indifferent customer in segment B is x(iB, iA).

x(iB, iA)− pi +
iB
N
u(iB, iA) +

jB
N
u(iB + 1, iA) = −pj +

jB
N
u(jB, jA) +

iB
N
u(jB + 1, jA)

x(iB, iA) = pi − pj +
jB
N
u(jB, jA) +

iB
N
u(jB + 1, jA)− iB

N
u(iB, iA)− jB

N
u(iB + 1, iA)

≡ pi − pj + Eu(jB, jA)− Eu(iB, iA)
(2)

The probability that a new consumer in segment A choosing network i is given by

q(iA, iB) = 1− Φ(x(iA, iB))

= 1− Φ(pi − pj + Eu(jA, jB)− Eu(iA, iB)) (3)

u(iA, iB) = λ(iA) + δ

u(iA, iB)q(jB, jA)
u(iA, iB + 1)q(iB, iA)

jB
N

u(iA, iB − 1)q(jB, jA)
u(iA, iB)q(iB, iA)iB

N

1
2
(Segment B)

u(iA, iB)q(jA, jB)
u(iA + 1, iB)q(iA, iB)

jA
N

0
1
N

u(iA − 1, iB)q(jA, jB)
u(iA, iB)q(iA, iB)

iA−1
N

1
2
(Segment A)

Death Birth

Figure 2: Consumer value function

The consumer value function and the birth-death process are shown in Figure 2. For example, if
I were a consumer on platform i in market segment A, I have a value function u(iA, iB), which is a
expected discounted present value of all future period payoffs λ(.), when there are iA and iB users on
platform i in segments A and B. In the current period, I enjoy λ(iA) from other consumers on the same
platform in the same market segment.

In each of the future periods, only one consumer is randomly chosen to die among all consumers.
The probability of death in each segment is 1

2
, since the population in each segment is assumed to be

the same. The probability of death of one person is thus 1
2N

.
So in next period, given that the death is in segment A (with probability 1

2
, the probability that I were

to die is 1
N
(I get value 0), the probability that someone else dies on platform i is iA−1

N
, and the probability

that someone dies on platform j is jA
N
. The birth-death process is assumed to be simultaneous, so the

new born consumer cannot identify who died in the current period until she joins one platform. So
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the probability of a new consumer from segment A joining platform i and j is q(iA, iB) and q(jA, jB),
respectively.17 After the new consumer joins a platform, the new user base for each platform is realized,
and I have a new consumer value function u(iA ± 1, iB).

Thus the consumer value function u(iA, iB) is calculated as the expected present value of all future
period payoffs:

u(iA, iB) = λ(iA) + δ{iA − 1

2N
[q(iA, iB)u(iA, iB) + q(jA, jB)u(iA − 1, iB)]

+
jA
2N

[q(iA, iB)u(iA + 1, iB) + q(jA, jB)u(iA, iB)]

+
iB
2N

[q(iB, iA)u(iA, iB) + q(jB, jA)u(iA, iB − 1)]

+
jB
2N

[q(iB, iA)u(iA, iB + 1) + q(jB, jA)u(iA, iB)]} (4)

Similarly the consumer value for those in segment B is written as u(iB, iA), and consumer values in
platform j are written as u(jA, jB) and u(jB, jA), for market segment A and B respectively.18

Equation (4) can be simplified into a linear system of equations (5) and then u can be solved easily.

c1u(iA − 1, iB)+c2u(iA, iB − 1) + c3u(iA, iB) + c4u(iA, iB + 1) + c5u(iA + 1, iB) = λ(iA) (5)
where c1, c2, c3, c4, c5 are functions of δ, q, N , iA, iB, jA, jB

3.2 Firms’ Pricing Decisions

v(iA, iB) =

θ(iA, iB) + δv(iA, iB)q(jB, jA)
pi + θ(iA, iB + 1) + δv(iA, iB + 1)q(iB, iA)

jB
N

θ(iA, iB − 1) + δv(iA, iB − 1)q(jB, jA)
pi + θ(iA, iB) + δv(iA, iB)q(iB, iA)iB

N

1
2
(Segment B)

θ(iA, iB) + δv(iA, iB)q(jA, jB)
pi + θ(iA + 1, iB) + δv(iA + 1, iB)q(iA, iB)

jA
N

θ(iA − 1, iB) + δv(iA − 1, iB)q(jA, jB)
pi + θ(iA, iB) + δv(iA, iB)q(iA, iB)iA

N
1
2
(Segment A)

Death Birth

Figure 3: Firm value function

The firm value function is illustrated in Figure 3. Similar to consumer value function, the probability of
death in each segment is 1

2
. v(iA, iB) is the value function for firm i. v(iA, iB) and v(iB, iA) are always

equal, since both market segments are assumed to be identical.19

17Note that I assume that the outside option is always dominated, so here q(iA, iB) = 1− q(jA, jB).
18Note that I do not distinguish between ui and uj because the model is a symmetric one. In equilibrium, ui(z1, z2) =

uj(z1, z2), ∀z1, z2 ∈ [0, N ]
19The only state variables are market shares (customer bases) in both each market segments. So in equilibrium, firm

value depends on market share only, not on the identity of the firm, i.e. vi(z1, z2) = vj(z1, z2), ∀z1, z2 ∈ [0, N ]
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The corresponding formula for the firms’ value function is given by:20

v(iA, iB) =
iA
2N

[q(iA, iB)(pi + θ(iA, iB) + δv(iA, iB)) + q(jA, jB)(θ(iA − 1, iB) + δv(iA − 1, iB))]

+
jA
N

[q(iA, iB)(pi + θ(iA + 1, iB) + δv(iA + 1, iB)) + q(jA, jB)(θ(iA, iB) + δv(iA, iB))]

+
iB
N

[q(iB, iA)(pi + θ(iA, iB) + δv(iA, iB)) + q(jB, jA)(θ(iA, iB − 1) + δv(iA, iB − 1))]

+
jB
N

[q(iB, iA)(pi + θ(iA, iB + 1) + δv(iA, iB + 1)) + q(jB, jA)(θ(iA, iB) + δv(iA, iB))] (6)

As we see from equation (6), q(iA, iB) depends on pi through equation (3). So we can solve for the
optimal pricing decision by equating the first-order condition with respect to pi to zero:

pi = h(iA, iB)− w(iA, iB) (7)

where

h(iA, iB) = − q(iA, iB) + q(iB, iA)

q′(iA, iB) + q′(iB, iA)
21 (8)

w(iA, iB) =
q′(iA, iB)

q′(iA, iB) + q′(iB, iA)
w1(iA, iB) +

q′(iB, iA)

q′(iA, iB) + q′(iB, iA)
w2(iA, iB) (9)

in which

w1(iA, iB) = −iA
N
θ(iA − 1, iB) +

iA − jA
N

θ(iA, iB) +
jA
N
θ(iA + 1, iB) (10)

+ δ[−iA
N
v(iA − 1, iB) +

iA − jA
N

v(iA, iB) +
jA
N
v(iA + 1, iB)]

w2(iA, iB) = −iB
N
θ(iA, iB − 1) +

iB − jB
θ

(iA, iB) +
jB
N
θ(iA, iB + 1) (11)

+ δ[−iB
N
v(iA, iB − 1) +

iB − jB
v

(iA, iB) +
jB
N
v(iA, iB + 1)]

Firms’ optimal pricing decisions (equation (7)) show a tradeoff between harvesting and investing
effects, denoted as h and w. Harvesting and investing effects are terminologies commonly adopted in
the literature of switching cost.22 Through harvesting effect, firms can charge a high price for existing
customers because they are unwilling to switch due to switching costs. At the same time, investing effect
shows the incentive for firms to lower its entry price in order to lock more customers into their product so
that more surplus value can exploited in the future. In the model of network effects, however, switching
cost is modeled through a birth-death process, so instead of exploiting existing customers, firms can
exploit new customers by charging a high entry price due to the network effects valued by the new
customer. At the same time, the firm finds incentive to lowers its entry price in order to enlarge its

20Throughout the paper, I write the network entry price for firm i as pi instead of pi(iA, iB) for simplicity.
21q′ = dq

dp
22Please see Farrell and Klemperer (2007) for a literature review related to these concepts.
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network in order to exploit more surplus value from new customers later.
In the harvesting effect shown by equation (8)23, q(iA, iB) and q(iB, iA) are the probability that

network i is chosen by a new consumer if death occurred in market segment A and B, respectively.24

q′(iA, iB) and q′(iB, iA) are the first order conditions of consumer demand with respect to the entry price
pi. They measure the sensitivity of consumers’ platform choice to the firm’s pricing decision. The more
sensitive consumers are to prices (higher elasticity of demand), the weaker the harvesting effect is for
the firm.

The investing effect, denoted by w(iA, iB) in equation (9), equals to a weighted average of the
investing effects in both market segments. Relative elasticities between two market segments are used
as weights. If consumers in market segment A are very sensitive to price changes compared to those
in segment B, then firms would focus more on segment A, since a small change in price would cause
a larger response from consumer demand.25 The investing effects in each market segment are denoted
by w1(iA, iB) and w2(iA, iB) in equations (10) and (11)26. Technically speaking, the investing effect is a
measure of how much discounted present value the firm can gain by winning over a new customer. Each
investing effect has two parts: current gain in period payoff, and future gain in firm value, which is a
discounted value of all future payoffs.

Firms’ optimal pricing decision is essentially measured by the average elasticity of consumer demand,
which is very similar to the optimization rule in the standard profit maximization model. This can be
shown by transforming equation (7) into:

pi − (−w(iA, iB))

pi
=

q(iA, iB) + q(iB, iA)

−(q(iA, iB) + q(iB, iA))′pi
=

1

ε
(12)

If we substitute equation (7) back into firm’s value function (6), we can get a simplified version of
firm’s optimization problem:

c1v(iA − 1, iB) + c2v(iA, iB − 1) + c3v(iA, iB) + c4v(iA, iB + 1) + c5v(iA + 1, iB) = B(iA, iB) (13)
where c1, c2, c3, c4, c5 and B are functions of δ, q, q′, θ, N , iA, iB, jA, jB

Then the linear system of equations (13) can be solved easily to get the value of v.

3.3 Transition Matrix

Given the equilibrium values of q, I calculate the transition matrix of the Markov process M =
m((z1, z2), (z3, z4)),∀z1, z2, z3, z4 ∈ [0, N ] where m((z1, z2), (z3, z4)) is the probability of moving from

23Note that all calculation and explanation shown here are done from the perspective of platform i.
24The average probability is q(iA,iB)+q(iB ,iA)

2 , assuming homogeneous and constant population in both market segments.
Please refer to Online Appendix for a version with heterogeneous population.

25The weights between two market segments are also shown in the harvesting effect. Please see the Online Appendix
for more detailed discussion.

26Here the subscript of w refers to the market segment noted by the argument of w, e.g. subscript 2 in w2(iA, iB) refers
to the second argument of w, which is segment B.
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state (z1, z2) to state (z3, z4). Therefore we have:

m[(iA, iB), (iA − 1, iB)] =
iA
2N

q(jA, jB)

m[(iA, iB), (iA, iB − 1)] =
iB
2N

q(jB, jA)

m[(iA, iB), (iA, iB)] =
iA
2N

q(iA, iB) +
iB
2N

q(iB, iA) +
jA
2N

q(jA, jB) +
jB
2N

q(jB, jA)

m[(iA, iB), (iA, iB + 1)] =
jB
2N

q(iB, iA)

m[(iA, iB), (iA + 1, iB)] =
jA
2N

q(iA, iB)

With the transition matrixM , the equilibrium stationary market share µ can be retrieved by solving
µM = µ.

4 Analytical Results
Proposition 1. Suppose Property 1 and 2 hold. There exists a δ′ such that, if δ < δ′, there exists an
unique equilibrium.

The proof of Proposition 1 can be found in the appendix. The uniqueness of the equilibrium can
only be shown with low values of discount factor only. The logic of the proof is then used for numerical
simulation, which confirms the existence and uniquess of the equilibrium.

Proposition 2. Suppose Property 1 and 2 hold. There exists a δ′ such that, if δ < δ′, then there exists
ψ′ such that when ψ > ψ′, the stationary distribution of market shares is bimodal with local dominance.

Proposition 2 states that if the strength of network effects is strong enough, i.e. consumers value
highly the number of other users on the same platform, then market equilibrium shows local dominance
where each platform dominates one market segment, and both platforms charge a high entry price to
new customers.

As mentioned before, new consumers take into consideration of three factors when choosing a plat-
form: brand preferences, entry prices, and total consumer value. Consumer value is calculated as the
discounted present value of all future payoffs from a platform, and each period’s payoff is a function of
size and strength of network effects. If the strength of network effects is weak, then consumer value is
less important compared to brand preferences and prices. Both platforms compete fiercely for consumers
through prices. In equilibrium, both charge a relative low price and retain significant market shares in
both segments. However, if strength of network effects is strong, consumer value outweighs the other
two factors. In each market segment, the larger platform enjoys greater advantage since consumers value
highly of existing user base. In equilibrium, each platform dominates one market segment.

Proposition 2 characterizes the equilibrium with low discount factors and strong network effects, and
contrasts with equilibrium from models with global network effects. In those models, there is no market
segmentation, and consumers value all other consumers on the same platform. If network effects are
strong, equilibrium predicts one-firm dominance of the whole market. When extending the model to local
network effects with two market segments, it seems that both global dominance and local dominance
are possible with strong network effects. However, my model predicts that with local network effects,
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only local dominance can be observed. The main reason that only local dominance is achieved is due
to firms’ inability to price discriminate among market segments. In this case, neither firms have the
incentive to fight through lowering their prices.

In the following section, numerical simulation complements theoretical propositions by providing a
complete picture behind model equilibria.

5 Numerical Results
In this section, I summarize and plot the model equilibria with different values of discount factors (δ)
and strength of network effects (ψ), and provide detailed explanation of the rationales behind different
patterns of results.

Figure 4: Stationary Distribution of Market Shares

I solve for the stationary distribution of market shares of the model with all values of δ and ψ.27 I
group different shapes of distribution into four groups:

27The numerical simulation of Figure 4 is done using N = 5, which can be interpreted as 20% of the consumers re-
evaluate their network decisions every period. The main reason of using a small value of N is because of computational
power limit. The time required to compute the equilibrium is exponential in N . Models with higher N produces similar
qualitative results. Later numerical results with specific values of δ and ψ are computed using N = 20.
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A: Uni-modal (both platforms have similar market shares in both segments)
B: Bi-modal with Global Dominance (one platform dominates both segments)
C: Four-modal (mixture between Global and Local Dominance)
D: Bi-modal with Local Dominance (each platform dominates one segment)

In the following subsection, I will explain each of the four types of equilibrium market structure in
detail for low and high values of discount factor δ.

5.1 Low Discount Factor (δ = 0.60)
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Figure 5: Stationary Distribution of Market Shares (δ = 0.60)

Figure 5 lists one of the main equilibrium results (distribution of market shares) with different
strengths of network effects when the discount factor is small (δ = 0.6).

Each graph shows the stationary distribution of market shares for any one platform. Points on the
horizontal plane represent market shares in segment A and B, and the vertical axis shows the probability
of observing each point.2829

28When the market shares of one platform are (xA, xB), market shares of the other platform are (1− xA, 1− xB).
29For more graphs with other equilibrium results, pelase refer to the Online Appendix
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In industries without network effects (ψ = 0), the distribution of market shares concentrates in the
center of the domain, i.e. platforms split the market in each segment. Platforms always charge the same
price regardless of their market shares since a larger market share does not bring extra utility to new
consumers. Then new consumers choose a platform based purely on their own brand preferences. The
distribution of market shares corresponds to region A in Figure 4.

In industries where the strength of network effects is strong (e.g. ψ = 0.6), the stationary distribution
of market shares is bimodal with local dominance, i.e. one platform dominates either segment A or B,
but not both. Numerical simulation here not only confirms the analytical result, but also expands the
result to all values of δ. It corresponds to region D in Figure 4.

Local dominance equilibrium can be explained using the harvesting and investing effects. When
each platform dominates one segment, harvesting effect is large because because a new consumer in that
segment has a high reservation price for a larger network. Both platforms exploit new customers in their
respective dominant market segment by charging a high price. Since price discrimination is not allowed,
neither platforms have the incentive to fight for customers in the competitor’s segment by lowering its
price and forgo the profit from its own dominant segment.

5.2 High Discount Factor (δ = 0.92)
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Figure 6: Stationary Distribution of Market Shares (δ = 0.92)
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Figure 6 lists equilibrium results when the discount factor is large (δ = 0.92).
In the model with small discount factor (δ = 0.60), when increasing the strength of network effects,

the stationary distribution of market shares changes from uni-modal to bi-modal with local dominance.
However, in the model with large discount factor (δ = 0.92), the stationary distribution of market shares
changes from uni-modal to bi-modal with global dominance, then to four-modal, and lastly to bi-modal
with local dominance.

In this case, global dominance is achievable where one platform dominates both segments (ψ = 0.12).
In this equilibrium, both small and large platforms charge a high price. This is possible only when ψ is
not too large, so that certain new customers still choose the smaller platform over the larger platform due
to their own platform preference. However, as the strength of network effects becomes higher (ψ = 0.18),
small platform cannot attract customers and charge a high price at the same time any more.30

6 Concluding Remarks
In this paper, I model local network effects based on an extension of the platform competition model
proposed by Cabral (2011). I derive several analytical results and numerical results that characterizes
equilibrium, including the consumers’ platform decision, market structure and the platforms’ optimal
pricing strategy. I show that, if network effects are weak, then the stationary distribution of market
shares is unimodal. If network effects are strong, however, then equilibrium market structure feature
local dominance, that is, each firm dominates one local market. Finally, in the intermediate case when
the discount factor is high and network effects relatively weak, the equilibrium features global dominance
where one firm dominates both local markets; or four-modal equilibrium, a mixture between global and
local dominance. I provide a rationale for why the different distributions are observed.

There are many other interesting issues that one can analyze with this local network effects model.
One is to include firm entry and exit decisions: I would expect the optimal platform pricing strategy
to changes with the potential threat of entry (see, for example, Fudenberg and Tirole (2000)). A
second area of research is the role of heterogeneous network effects. Another promising extension would
allow firms to increase the strength of network effects as a way to attract new users and keep existing
ones. Finally, adding social networking elements (e.g., allowing communication across different market
segments) would extend the model in a realistic model. All in all, I believe my model provides a first
step in the effort to connect the IO and social networks literatures.

7 Appendix
Proof of Proposition 1. Combining firms’ optimal pricing strategy equation (7) and consumer choice
decision equation (3), we get:

30More detailed analysis and insights are provided in the Online Appendix.
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pi =
2− Φ(x(iA, iB))− Φ(x(iB, iA))

φ(x(iA, iB)) + φ(x(iB, iA))
− φ(x(iA, iB))

φ(x(iA, iB)) + φ(x(iB, iA))
w1(iA, iB)− Φ(x(iB, iA))

φ(x(iA, iB)) + φ(x(iB, iA))
w2(jA, jB)

(14)

where w1(iA, iB) =− iA
N
θ(iA − 1, iB) +

(iA − jA)

N
θ(iA, iB) +

jA
N
θ(iA + 1, iB)

w2(iA, iB) =− iB
N
θ(iA, iB − 1) +

(iB − jB)

N
θ(iA, iB) +

jB
N
θ(iA, iB + 1)

Similarly,

pj =
2− Φ(x(jA, jB))− Φ(x(jB, jA))

Φ(x(jA, jB)) + Φ(x(jB, jA))
− Φ(x(jA, jB))

Φ(x(jA, jB)) + Φ(x(jB, jA))
w1(jA, jB)− Φ(x(jB, jA))

Φ(x(jA, jB)) + Φ(x(jB, jA))
w2(jA, jB)

(15)

where w1(jA, jB) =− jA
N
θ(jA − 1, jB) +

(jA − iA)

N
θ(jA, jB) +

jA
N
θ(jA + 1, jB)

w2(jA, jB) =− jB
N
θ(jA, jB − 1) +

(jB − iB)

N
θ(jA, jB) +

jB
N
θ(jA, jB + 1)

From the location of the indifference consumer in equation (1) and (2) and iA = N−jA, iB = N−jB,
one can get x(iA, iB) = −x(jA, jB), and x(iB, iA) = −x(jB, jA). Given Assumption 1 (ii), pi − pj can be
written as:

pi − pj =
2− 2Φ(x(iA, iB))− 2Φ(x(iB, iA))

φ(x(iA, iB)) + φ(x(iB, iA))
+

φ(x(iA, iB))

φ(x(iA, iB)) + φ(x(iB, iA))
(w1(jA, jB)− w1(iA, iB))

+
Φ(x(iB, iA))

φ(x(iA, iB)) + φ(x(iB, iA))
(w2(iA, iB)− w2(jA, jB))

=
Φ(−x(iA, iB)) + Φ(−x(iB, iA))

φ(−x(iA, iB)) + φ(−x(iB, iA))
− Φ(x(iA, iB)) + Φ(x(iB, iA))

φ(x(iA, iB)) + φ(x(iB, iA))
+

φ(x(iA, iB))

φ(x(iA, iB)) + φ(x(iB, iA))

(w1(jA, jB)− w1(iA, iB)) +
Φ(x(iB, iA))

φ(x(iA, iB)) + φ(x(iB, iA))
(w2(iA, iB)− w2(jA, jB)) (16)

In order to show the steps of the proof in a clearer way, I simplify the expressions by using the follow-
ing notations: ∆pi = pi − pj,ΦAB = Φ(x(iA, iB)),ΦBA = Φ(x(iB, iA)),Φ−AB = Φ(−x(iA, iB)),Φ−BA =
Φ(−x(iB, iA)), φAB = φ(x(iA, iB)), φBA = φ(x(iB, iA)), φ−AB = φ(−x(iA, iB)), φ−BA = φ(−x(iB, iA)), wi1 =
w1(iA, iB), wi2 = w2(iA, iB), wj1 = w1(jA, jB), wj2 = w2(jA, jB). Thus equation (16) can be re-written as:

∆pi +
ΦAB + ΦBA

φAB + φBA
− Φ−AB + Φ−BA
φ−AB + φ−BA

=
φAB

φAB + φBA
(wj1 − wi1) +

φBA
φAB + φBA

(wj2 − wi2)

=
φAB

φAB + φBA
(wj1 − wi1 − w

j
2 + wi2) + wj2 − wi2 (17)

From Assumption 1 (iv) Φ(x)
φ(x)

is strictly increasing in x, it can be shown that ΦAB+ΦBA

φAB+φBA
− Φ−AB+Φ−BA

φ−AB+φ−BA

increases when both x(iA, iB) and x(iB, iA) increase. From equation (1) and (2), both x(iA, iB) and
x(iB, iA) increase in ∆pi. Therefore, the left-hand side of equation (17) increases in ∆pi.
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In order to show the uniqueness of the equilibrium, we need to show that the value of the right-hand
side of the equation (17) is decreasing in ∆pi.

dRHS

d∆pi
=
φ′AB(φAB + φBA)− φAB(φ′AB + φ′BA)

[φAB + φBA]2
(wj1 − wi1 − w

j
2 + wi2)

=
1

[φAB + φBA]2
(φ′ABφBA − φABφ′BA)(wj1 − wi1 − w

j
2 + wi2) (18)

To determine the sign of equation (18), we need to know the signs for each one of the three parts. The
first part 1

[φAB+φBA]2
is obviously positive. However, the sign of the second and third parts of equation

(18) φ′ABφBA−φABφ′BA and wj1−wi1−w
j
2 +wi2 are unclear, and we need to rely on the following lemmas:

Lemma 1. For small values of δ, xBA < xAB if an only if iA < iB.

Proof. Suppose δ = 0, then from equation (4)), u(iA, iB) = λiA ,31 then we can get:

xAB = ∆pi +
1

N
[jAλjA + iAλjA+1 − iAλiA − jAλiA+1]

xBA = ∆pi +
1

N
[jBλjB + iBλjB+1 − iBλiB − jBλiB+1]

Subtracting equation xAB from xBA, we get:

N(xBA − xAB) = N(λjB − λjA + λiA+1 − λiB+1) + iA(λjA − λjA+1 + λiA − λiA+1) + iB(λiB+1 − λiB + λjB+1 − λjB)

= jB(λjB − λjA + λiA+1 − λiB+1) + iA(λjA − λjA+1 + λiA − λiA+1) + iB(λiA+1 − λiB + λjB+1 − λjA)

From iA < iB, which also implies jA > jB, together with Property 1, we conclude that xBA < xAB if an
only if iA < iB.

Lemma 2. φ′ABφBA − φABφ′BA > 0 if and only if xBA < xAB.

From Assumption 1 (v), xBA < xAB means φ′(xAB)
φ(xAB)

< φ′(xBA)
φ(xBA)

, and the result follows.

Lemma 3.

w1(iA, iB) = w2(iB, iA)

w1(jA, jB) = w2(jB, jA)

Note that w is called the “investing” effect, and it measures firm’s additional aftermarket benefit from
making a sale compared to losing it. From equation (9), we know that w1(iA, iB) means firm i’s investing
effect for market segment A when the sizes are iA and iB, and w2(iB, iA) also means the investing effect
for market segment B when sizes are iB and iA. By definition w1(iA, iB) and w2(iB, iA) refer to the same
value, so do w1(jA, jB) and w2(jB, jA).

Lemma 4. For small values of δ, w1(iB, iA)− w1(iA, iB) > 0 if iB > iA.
31Here I write λiA ≡ λ(iA) for better legibility.
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Proof. Suppose δ = 0, then from equation (9), we get:

w1(iB, iA) =
iB
N

(θiA,iB − θiA,iB−1) +
iB
N

(θiA,iB+1 − θiA,iB)

w1(iA, iB) =
iA
N

(θiA,iB − θiA−1,iB) +
jA
N

(θiA+1,iB − θiA,iB)

Subtracting w1(iA, iB) from w1(iB, iA) we have:

w1(iB, iA)− w1(iA, iB)

=[θiA,iB+1 − θiA+1,iB ] +
iB
N

[θiA,iB − θiA,iB−1 − θiA,iB+1 + θiA,iB ] +
iA
N

[θiA+1,iB − θiA,iB − (θiA,iB − θiA−1,iB)]

=
jB
N

[θiA,iB+1 − θiA+1,iB ] +
iB
N

[θiA,iB − θiA,iB−1 − (θiA+1,iB − θiA,iB)] +
iA
N

[θiA+1,iB − θiA,iB − (θiA,iB − θiA−1,iB)]

According to Property 2, each component of the equation above gives a positive value when iB > iA.
So w1(iB, iA)− w1(iA, iB) > 0.

Comining Lemma 1 and Lemma 2, we know that the second part of equation (18) φ′ABφBA−φABφ′BA >
0 if iA < iB.

Using Lemma 3, we can transform the third part of equation (18) wj1 − wi1 − w
j
2 + wi2 into:

wj1 − wi1 − w
j
2 + wi2 = w1(jA, jB)− w1(iA, iB)− w2(jA, jB) + w2(iA, iB)

= w1(jA, jB)− w1(iA, iB)− w1(jB, jA) + w1(iB, iA)

= w1(jA, jB)− w1(jB, jA) + w1(iB, iA)− w1(iA, iB) (19)

From Lemma 4, we know that wj1 − wi1 − w
j
2 + wi2 > 0 when iA < iB.

Therefore, when iA < iB (or jA > jB), the second term of equation (18) is negative and the third
term is positive; on the other hand, when iA > iB (or jA < jB), the second term of equation (18) is
positive and the third term is negative. At the same time, the first term is always positive. Thus, the
value of equation (18) is always negative, i.e. the right-hand side of equation (16) is decreasing in ∆pi.

To conclude, there exists a unique value of ∆pi that satisfies equation (16). Together with the value
of u(iA, iB), w1(iA, iB), w2(iA, iB), we can characterize the full equilibrium including optimal prices
p(iA, iB) and probability of sales q(iA, iB) ∀iA, iB.

Proof of Proposition 2. Suppose δ = 0, from equation (4)), u(iA, iB) = λiA . From equation (1), I
simiplify the equation by denoting

x(iA, iB) = pi − pj + Eu(jA, jB)− Eu(iA, iB)

≡ ∆p+ L1

x(iB, iA) = pi − pj + Eu(jB, jA)− Eu(iB, iA)

≡ ∆p+ L2
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If Property (1) and (2) hold, then I can get:

L1 > 0 if jA > iA

L2 > 0 if jB > iB

From equations (14) and (15), I denote:

wj1 − wi1 ≡ L3 > 0 if jA > iA

wj2 − wi2 ≡ L4 > 0 if jB > iB

I can write equation (16) as:

∆p =
2− 2Φ(∆p+ L1)− 2Φ(∆p+ L2)

φ(∆p+ L1) + φ(∆p+ L2)
+

φ(∆p+ L1)

φ(∆p+ L1) + φ(∆p+ L2)
L3 +

Φ(∆p+ L2)

φ(∆p+ L1) + φ(∆p+ L2)
L4

(20)

In order to show that the probability distribution of market share is bi-modal with local dominance,
it is sufficient to shwo that if iA + iB = N , iA > jA, and iB < jB, then both q(iA, iB) and q(iB, iA) → 1
as ψ →∞.

When iA + iB = N , iA > jA, and iB < jB, we can show the following properties regarding
L1, L2, L3, L4:

L1 < 0

L2 > 0

L3 < 0

L4 > 0

L1 = −L2

L3 = −L4

Using these properties, equation (20) can be simplified as:

∆p =
2− 2Φ(∆p− L2)− 2Φ(∆p+ L2)

φ(∆p− L2) + φ(∆p+ L2)
+

L4

φ(∆p− L2) + φ(∆p+ L2)
[φ(∆p+ L2)− φ(∆p− L2)] (21)

Lemma 5. Under the setup mentioned above in Proposition (2), the only possible value of ∆p that
satisfies equation (21) is zero.

Proof. In order to show the proof with clarity, I denote parts of equation (21) using the following
notations:

RHS1 =
2− 2Φ(∆p− L2)− 2Φ(∆p+ L2)

φ(∆p− L2) + φ(∆p+ L2)

RHS2 =
L4

φ(∆p− L2) + φ(∆p+ L2)
[φ(∆p+ L2)− φ(∆p− L2)]

There are two possible cases regarding the values of of ∆p− L2:
Case 1: ∆p− L2 ≥ 0⇒ ∆p > L2 ≥ 0⇒ RHS1 < 0, RHS2 < 0⇒ ∆p < 0 (contradiction)
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Case 2: ∆p− L2 < 0⇒ ∆p < L2. Then ∆p+ L2 has two possible values:
Case 2.1: ∆p+ L2 ≤ 0⇒ ∆p ≤ −L2 < 0⇒ RHS1 > 0, RHS2 > 0⇒ ∆p > 0 (contradiction)
Case 2.2: ∆p + L2 > 0 ⇒ ∆p > −L2 ⇒ −L2 < ∆p < L2. Then again ∆p can fall into one of

the following three cases:
Case 2.2.1: 0 < ∆p < L2 ⇒ RHS1 < 0, RHS2 < 0⇒ ∆p < 0 (contradiction)
Case 2.2.2: −L2 < ∆p < 0⇒ RHS1 > 0, RHS2 > 0⇒ ∆p > 0 (contradiction)
Case 2.2.3: ∆p = 0⇒ RHS1 = 0, RHS2 = 0, and ∆p = RHS1 +RHS2 = 0.

Therefore, ∆p = 0 is the only case that satisfies equation (21)

Thus, the position of the indifferent consumer x(iA, iB) becomes:

x(iA, iB) = pi − pj + Eu(jA, jB)− Eu(iA, iB)

≡ ∆p+ L1

= L1

=
1

N
[jAλjA + iAλjA+1 − iAλiA − jBλiA+1]

=
1

N
[jA(λjA − λiA+1) + iA(λjA+1 − λiA)]

< 0

The same steps can also show that x(iA, iB) < 0
Accordingt to Property (1), consumer period payofff λ(i) is a function of strength of network effects

ψ and is increasing in user base i. So ∂x(iA,iB)
∂ψ

< 0 and ∂x(iB ,iA)
∂ψ

< 0. As ψ → ∞, x(iA, iB) and
x(iB, iA)→ −∞. From equation (3), it can be shown that both q(iA, iB) and q(iB, iA) → 1.
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